Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-38004424

RESUMO

Oral cancer pain remains a significant public health concern. Despite the development of improved treatments, pain continues to be a debilitating clinical feature of the disease, leading to reduced oral mobility and diminished quality of life. Opioids are the gold standard treatment for moderate-to-severe oral cancer pain; however, chronic opioid administration leads to hyperalgesia, tolerance, and dependence. The aim of this review is to present accumulating evidence that epidermal growth factor receptor (EGFR) signaling, often dysregulated in cancer, is also an emerging signaling pathway critically involved in pain and opioid tolerance. We presented preclinical and clinical data to demonstrate how repurposing EGFR inhibitors typically used for cancer treatment could be an effective pharmacological strategy to treat oral cancer pain and to prevent or delay the development of opioid tolerance. We also propose that EGFR interaction with the µ-opioid receptor and glutamate N-methyl-D-aspartate receptor could be two novel downstream mechanisms contributing to pain and morphine tolerance. Most data presented here support that repurposing EGFR inhibitors as non-opioid analgesics in oral cancer pain is promising and warrants further research.

2.
Sci Signal ; 16(801): eadf9535, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669398

RESUMO

Oral cancer causes pain associated with cancer progression. We report here that the function of the Ca2+ channel ORAI1 is an important regulator of oral cancer pain. ORAI1 was highly expressed in tumor samples from patients with oral cancer, and ORAI1 activation caused sustained Ca2+ influx in human oral cancer cells. RNA-seq analysis showed that ORAI1 regulated many genes encoding oral cancer markers such as metalloproteases (MMPs) and pain modulators. Compared with control cells, oral cancer cells lacking ORAI1 formed smaller tumors that elicited decreased allodynia when inoculated into mouse paws. Exposure of trigeminal ganglia neurons to MMP1 evoked an increase in action potentials. These data demonstrate an important role of ORAI1 in oral cancer progression and pain, potentially by controlling MMP1 abundance.


Assuntos
Neoplasias Bucais , Dor Nociceptiva , Animais , Humanos , Camundongos , Potenciais de Ação , Hiperalgesia , Metaloproteinase 1 da Matriz , Proteína ORAI1
3.
J Mol Neurosci ; 73(7-8): 487-515, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37318736

RESUMO

Neurodegenerative diseases such as Alzheimer's disease have been classically studied from a purely neuronocentric point of view. More recent evidences support the notion that other cell populations are involved in disease progression. In this sense, the possible pathogenic role of glial cells like astrocytes is increasingly being recognized. Once faced with tissue damage signals and other stimuli present in disease environments, astrocytes suffer many morphological and functional changes, a process referred as reactive astrogliosis. Studies from murine models and humans suggest that these complex and heterogeneous responses could manifest as disease-specific astrocyte phenotypes. Clear understanding of disease-associated astrocytes is a necessary step to fully disclose neurodegenerative processes, aiding in the design of new therapeutic and diagnostic strategies. In this work, we present the transcriptomics characterization of neurotoxic astrocytic cultures isolated from adult symptomatic animals of the triple transgenic mouse model of Alzheimer's disease (3xTg-AD). According to the observed profile, 3xTg-AD neurotoxic astrocytes show various reactivity features including alteration of the extracellular matrix and release of pro-inflammatory and proliferative factors that could result in harmful effects to neurons. Moreover, these alterations could be a consequence of stress responses at the endoplasmic reticulum and mitochondria as well as of concomitant metabolic adaptations. Present results support the hypothesis that adaptive changes of astrocytic function induced by a stressed microenvironment could later promote harmful astrocyte phenotypes and further accelerate or induce neurodegenerative processes.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Astrócitos/metabolismo , Transcriptoma , Modelos Animais de Doenças
4.
Adv Biol (Weinh) ; 6(9): e2200187, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35925609

RESUMO

Head and neck cancer (HNC) is the seventh most common cancer worldwide, the majority being oral squamous cell carcinoma. Despite advances in cancer diagnosis and treatment, the survival rate of patients with HNC remains stagnant. The cancer-nerve interaction has been recognized as an important driver of cancer progression. Schwann cells, a type of peripheral glia, have been implicated in promoting cancer cell growth, migration, dispersion, and invasion into the nerve in many cancers. Here, it is demonstrated that the presence of Schwann cells makes oral cancer cells more aggressive by promoting their proliferation, extracellular matrix breakdown, and altering cell metabolism. Furthermore, oral cancer cells became larger, more circular, with more projections and nuclei following co-culturing with Schwann cells. RNA-sequencing analysis in oral cancer cells following exposure to Schwann cells shows corresponding changes in genes involved in the hallmarks of cancer and cell metabolism; the enriched KEGG pathways are spliceosome, RNA transport, cell cycle, axon guidance, signaling pathways regulating pluripotency of stem cells, cAMP signaling, WNT signaling, proteoglycans in cancer and PI3K-Akt signaling. Taken together, these results suggest a significant role for Schwann cells in facilitating oral cancer progression, highlighting their potential as a target to treat oral cancer progression.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Carcinoma de Células Escamosas/genética , Proliferação de Células/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Neoplasias Bucais/genética , Fosfatidilinositol 3-Quinases/metabolismo , Células de Schwann/metabolismo , Via de Sinalização Wnt
5.
Neurochem Int ; 159: 105403, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35853553

RESUMO

Alzheimer's disease has been considered mostly as a neuronal pathology, although increasing evidence suggests that glial cells might play a key role in the disease onset and progression. In this sense, astrocytes, with their central role in neuronal metabolism and function, are of great interest for increasing our understanding of the disease. Thus, exploring the morphological and functional changes suffered by astrocytes along the course of this disorder has great therapeutic and diagnostic potential. In this work we isolated and cultivated astrocytes from symptomatic 9-10-months-old adult 3xTg-AD mice, with the aim of characterizing their phenotype and exploring their pathogenic potential. These "old" astrocytes occurring in the 3xTg-AD mouse model of Alzheimer's Disease presented high proliferation rate and differential expression of astrocytic markers compared with controls. They were neurotoxic to primary neuronal cultures both, in neuronal-astrocyte co-cultures and when their conditioned media (ACM) was added into neuronal cultures. ACM caused neuronal GSK3ß activation, changes in cytochrome c pattern, and increased caspase 3 activity, suggesting intrinsic apoptotic pathway activation. Exposure of neurons to ACM caused different subcellular responses. ACM application to the somato-dendritic domain in compartmentalised microfluidic chambers caused degeneration both locally in soma/dendrites and distally in axons. However, exposure of axons to ACM did not affect somato-dendritic nor axonal integrity. We propose that this newly described old 3xTg-AD neurotoxic astrocytic population can contribute towards the mechanistic understanding of the disease and shed light on new therapeutical opportunities.


Assuntos
Doença de Alzheimer , Síndromes Neurotóxicas , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Síndromes Neurotóxicas/metabolismo
6.
Curr Med Chem ; 29(24): 4251-4281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35139777

RESUMO

Multidrug resistance (MDR) in the opportunistic pathogen Candida albicans is defined as non-susceptibility to at least one agent in two or more drug classes. This phenomenon has been increasingly reported since the rise in the incidence of fungal infections in immunocompromised patients at the end of the last century. After the discovery of efflux pump overexpression as a principal mechanism causing MDR in Candida strains, drug discovery targeting fungal efflux transporters has had a growing impact. Chemosensitization aims to enhance azole intracellular concentrations through combination therapy with transporter inhibitors. Consequently, the use of drug efflux inhibitors combined with the antifungal agent will sensitize the pathogen. As a result, the use of lower drug concentrations will reduce possible adverse effects on the host. Through an extensive revision of the literature, this review aims to provide an exhaustive and critical analysis of the studies carried out in the past two decades regarding the chemosensitization strategy to cope with multidrug resistance in C. albicans. This work provides a deep analysis of the research on the inhibition of drug-efflux membrane transporters by prenylated flavonoids and the interactions of these phytocompounds with azole antifungals as an approach to chemosensitize multidrug-resistant C. albicans strains. We highlight the importance of prenylflavonoids and their particular chemical and pharmacological characteristics that make them excellent candidates with therapeutic potential as chemosensitizers. Finally, we propose the need for further research on prenyl flavonoids as inhibitors of drug-efflux mediated fungal resistance.


Assuntos
Antifúngicos , Candida albicans , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Azóis/farmacologia , Azóis/uso terapêutico , Farmacorresistência Fúngica , Resistência a Múltiplos Medicamentos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Proteínas Fúngicas/metabolismo , Humanos , Proteínas de Membrana Transportadoras , Testes de Sensibilidade Microbiana , Neopreno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...